DETECTING EMERGING SINKHOLES WITH FWD TESTING

Carl A. Lenngren
Lund University
2014 FAA WORLDWIDE TECHNOLOG
TRANSFER CONFERENCE
6 August 2014

Objective

Too find dynamic response characteristics for sinkholes!

Quick Course

Assessing Pavement Properties by Time History Analysis of Deflection

Background: Rolling Deflectometer Tests

 During 1990:ies a test of pavement dynamic response was carried out with a Road Deflection Tester.

Rolling Deflectometer Tests

 The RDT was validated by Falling Weight Deflectometer Tests

Various pavement and subgrade types. 130 Test Sections

Linear elastic layer solutions

Transverse deflection profiles from truck load

First results

 Test verified significant difference between pavement types.

Load Mode and Magnitude Affect Properties

By plotting load vs. displacement hysterises curves are attained

Area of curve corresponds to dissipated work

Note! The Load-Displacement Loops are not a direct measure of hysteresis, but they reflect:

- Visco-elastic properties
- Soil Damping
- Material moving
- Water moving
- •Inertia

Calibration with actual truck fuel consumption tests in 2007

Flexible 4.2 Nm @70kN

Rigid 1.04 Nm @70 kN

Common Evaluation of Time Histories

- In-Field AC Master Curve Assessment
- Pavement Sustainability Assessment
 - Rolling Resistance
 - Jointed PCC Pavements
- Construction Control
 - Compaction
 - Saturated Soil Detection

Common Evaluation of Time Histories

- In-Field AC Master Curve Assessment
- Pavement Sustainability Assessment
 - Rolling Resistance
 - Jointed PCC Pavements
- Construction Control
 - Compaction
 - Saturated Soil Detection

Common Evaluation of Time Histories

- In-Field AC Master Curve Assessment
- Pavement Sustainability Assessment
 - Rolling Resistance
 - Jointed PCC Pavements
- Construction Control
 - Compaction
 - Saturated Soil Detection

Asphalt Concrete on Stiff Subgrade

Example: 180 mm Thick Asphalt Concrete Load-Deflection Diagram at 40°C

New 200 mm ACP @ 70 kN and @ 10 degrees C

Intermediate 2-lane (new)

Hästbo Section: 2750 Drop: 10; Height: 4 Int 3863 mNm

Low Volume Trunk Road

X512 Section: 265 Drop: 10;Height: 4 Int 9374 mNm

Effect of Curling Slabs

The edge effect was only apparent at the joint. \rightarrow overall contribution estimated to about 10 % higher for the moving vehicle.

Relative Difference on dissipation for Various Pavement Types, Soft Soils

	Flexible	Semi-Rigid	Jointed Rigid	Continuously Reinforced
Flexible	1	2	2.3	2.6
Semi-Rigid	.5	1	1.07	1.13
Jointed Rigid	.43	.93	1	1.07
Continuously Reinforced	.38	.88	.93	1

Visby Airport, Gotland

Visby Airport, Gotland

Visby Airport, Gotland

Serves Island Population of 48 000. Tourist traffic during Summer Months

Visby is a Medival town on the Unesco World Heritage List!

Photos courtesy of Gotland Tourist Board

Surface Distress

Photo: courtesy of Swedavia

FWD Testing Layout

Three Lines along runway

Test sequence [kN]

D	1	2	3	4	5	6	7	8	9
r									
0									
p									
L	25	25	40	50	70	25	40	50	70
0									
a									
d									

Backcalculation

Evercalc 4.0 Linear-Elastic Program
Three and Four Layer Models

RMS per sensor

3L 1.5 to 5.0 %

4L 0.8 to 3.5 %

(Acceptable for overlay design Not acceptable for research).

AC Modulus @15C

Unbound Layers

Elastic Solution

Certainly a drop of layer stiffness over settlement.

Difficult to assess reason, due to a combination of elastic and permanent deformations

Visby Load-Deflection diagram

Visby Load-Deflection diagram

Conclusions

- Time histories reveal that the unbound layers are poorly compacted, and that traffic will likely push more material away downward.
- The deficiency is limited to a circle of about two meters (7 ft).
- Surface profiling does not show any other sink holes.
- A full coverage of the runway with FWD testing is recommended.

Conclusions

- If pavements are monitored by FWD
- Time histories reveal:
 - Water present
 - Poor compaction due to sink holes or other reasons.

Conclusions

 Sampling Time Histories does not require more time in the field!

Thank You! Questions?

